SciBeh-Topic-Visualization

network, complex, graph, multiplex, structure

Topic 9

network complex graph multiplex structure contagion dynamic temporal centrality stochastic cascade fast degree adaptive spatial

Deep learning of stochastic contagion dynamics on complex networks
June 9, 2020 · · Original resource · article

Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically and/or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where the effective local mechanisms governing a dynamic are learned automatically from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using stochastic contagion dynamics of increasing complexity on static and temporal networks. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
big data
modeling
network
dynamics
complexity
complex system
structure
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application
The transsortative structure of networks

Network topologies can be highly non-trivial, due to the complex underlying behaviours that form them. While past research has shown that some processes on networks may be characterized by local statistics describing nodes and their neighbours, such as degree assortativity, these quantities fail to capture important sources of variation in network structure. We define a property called transsortativity that describes correlations among a node’s neighbours. Transsortativity can be systematically varied, independently of the network’s degree distribution and assortativity. Moreover, it can significantly impact the spread of contagions as well as the perceptions of neighbours, known as the majority illusion. Our work improves our ability to create and analyse more realistic models of complex networks.
modeling
perception
contagion
correlation
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application
Spatial strength centrality and the effect of spatial embeddings on network architecture

For many networks, it is useful to think of their nodes as being embedded in a latent space, and such embeddings can affect the probabilities for nodes to be adjacent to each other. In this paper, we extend existing models of synthetic networks to spatial network models by first embedding nodes in Euclidean space and then modifying the models so that progressively longer edges occur with progressively smaller probabilities. We start by extending a geographical fitness model by employing Gaussian-distributed fitnesses, and we then develop spatial versions of preferential attachment and configuration models. We define a notion of “spatial strength centrality” to help characterize how strongly a spatial embedding affects network structure, and we examine spatial strength centrality on a variety of real and synthetic networks.
network
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application
The localization of non-backtracking centrality in networks and its physical consequences
May 8, 2020 · · Original resource · article

The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community structure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.
covid-19
network
mechanism
consequence
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application
Severability of mesoscale components and local time scales in dynamical networks
June 4, 2020 · · Original resource · article

A major goal of dynamical systems theory is the search for simplified descriptions of the dynamics of a large number of interacting states. For overwhelmingly complex dynamical systems, the derivation of a reduced description on the entire dynamics at once is computationally infeasible. Other complex systems are so expansive that despite the continual onslaught of new data only partial information is available. To address this challenge, we define and optimise for a local quality function severability for measuring the dynamical coherency of a set of states over time. The theoretical underpinnings of severability lie in our local adaptation of the Simon-Ando-Fisher time-scale separation theorem, which formalises the intuition of local wells in the Markov landscape of a dynamical process, or the separation between a microscopic and a macroscopic dynamics. Finally, we demonstrate the practical relevance of severability by applying it to examples drawn from power networks, image segmentation, social networks, metabolic networks, and word association.
interaction
network
dynamics
network, complex, graph, multiplex, structure
bayesian, causal, measurement, replication, statistical
Stochastic master stability function for noisy complex networks

In this paper, we broaden the master stability function approach to study the stability of the synchronization manifold in complex networks of stochastic dynamical systems. We provide necessary and sufficient conditions for exponential stability that allow us to discriminate the impact of noise. We observe that noise can be beneficial for synchronization when it diffuses evenly in the network. On the contrary, an excessively large amount of noise only acting on a subset of the node state variables might have disruptive effects on the network synchronizability. To demonstrate our findings, we complement our theoretical derivations with extensive simulations on paradigmatic examples of networks of noisy systems.
physics
network, complex, graph, multiplex, structure
bayesian, causal, measurement, replication, statistical
The effect of heterogeneity on hypergraph contagion models
June 21, 2020 · · Original resource · article

The dynamics of network social contagion processes such as opinion formation and epidemic spreading are often mediated by interactions between multiple nodes. Previous results have shown that these higher-order interactions can profoundly modify the dynamics of contagion processes, resulting in bistability, hysteresis, and explosive transitions. In this paper, we present and analyze a hyperdegree-based mean-field description of the dynamics of the SIS model on hypergraphs, i.e. networks with higher-order interactions, and illustrate its applicability with the example of a hypergraph where contagion is mediated by both links (pairwise interactions) and triangles (three-way interactions). We consider various models for the organization of link and triangle structure, and different mechanisms of higher-order contagion and healing. We find that explosive transitions can be suppressed by heterogeneity in the link degree distribution, when links and triangles are chosen independently, or when link and triangle connections are positively correlated when compared to the uncorrelated case. We verify these results with microscopic simulations of the contagion process and with analytic predictions derived from the mean-field model. Our results show that the structure of higher-order interactions can have important effects on contagion processes on hypergraphs.
covid-19
transmission
modeling
network, complex, graph, multiplex, structure
bayesian, causal, measurement, replication, statistical
PDE-limits of stochastic SIS epidemics on networks
July 2, 2020 · · Original resource · article

Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this paper we conjecture and numerically prove that it is possible to construct PDE-limits of the exact stochastic SIS epidemics on regular and Erdős-Rényi networks. To do this we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of O(N)O(N) rather than O(2N)O(2^N)) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular and Erdős-Rényi networks show excellent agreement between the outcome of simulations and the numerical solution of the Fokker-Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a worked out example.
modeling
network
simulation
epidemics
likelihood
network, complex, graph, multiplex, structure
bayesian, causal, measurement, replication, statistical
Geometric detection of hierarchical backbones in real networks
June 5, 2020 · · Original resource · article

Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defining popularity of nodes and similarity between them, such that the more similar a node is to a less popular neighbor the higher the hierarchical load of the relationship. The geometric approach allows us to measure the local contribution of nodes and links to the hierarchy within a unified framework. Additionally, we propose a link filtering method, the similarity filter, able to extract hierarchical backbones containing the links that represent statistically significant deviations with respect to the maximum entropy null model for geometric heterogeneous networks. We applied our geometric approach to the detection of similarity backbones of real networks in different domains and found that the backbones preserve local topological features at all scales. Interestingly, we also found that similarity backbones favor cooperation in evolutionary dynamics modelling social dilemmas.
network
dynamics
detection
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application
Thresholding normally distributed data creates complex networks

Network data sets are often constructed by some kind of thresholding procedure. The resulting networks frequently possess properties such as heavy-tailed degree distributions, clustering, large connected components, and short average shortest path lengths. These properties are considered typical of complex networks and appear in many contexts, prompting consideration of their universality. Here we introduce a simple model for correlated relational data and study the network ensemble obtained by thresholding it. We find that some, but not all, of the properties associated with complex networks can be seen after thresholding the correlated data, even though the underlying data are not “complex.” In particular, we observe heavy-tailed degree distributions, a large numbers of triangles, and short path lengths, while we do not observe nonvanishing clustering or community structure.
data
distribution
statistics
network
complexity
network, complex, graph, multiplex, structure
machine, twitter, learn, technology, application