SciBeh-Topic-Visualization

protein, spike, neutralize, ace2, design

Topic 38

protein spike neutralize ace2 design infectivity lung candidate attenuate cellular d614 heparan inhibit inhibition membrane

Engineered ACE2 receptor traps potently neutralize SARS-CoV-2

An essential mechanism for SARS-CoV-1 and -2 infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human Fc domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2 pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50) in the 10-100 ng/ml range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-utilizing coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be pre-designed for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated or generated from convalescent patients.
covid-19
intervention
spike protein
potential
neutralization
design
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.
covid-19
vaccine
immunity
scalability
antibody
immunogenicity
neutralization
manufacture
potency
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the global coronavirus infectious disease (COVID-19) public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved the expression and immunogenicity of betacoronavirus spike proteins1. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here we show that mRNA-1273 induces both potent neutralizing antibody responses to wild-type (D614) and D614G mutant2 SARS-CoV-2 and CD8 T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in Phase 3 efficacy evaluation.
covid-19
vaccine
protection
application
expression
immunology
spike protein
antibody
immunogenicity
vaccine, trial, approve, drug, healthy
protein, spike, neutralize, ace2, design
Structure-based design of prefusion-stabilized SARS-CoV-2 spikes

The COVID-19 pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. Here, we characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting ~10-fold higher expression than its parental construct and the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.
covid-19
development
testing
intervention
stability
spike protein
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
A SARS-CoV-2 neutralizing antibody protects from lung pathology in a COVID-19 hamster model

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.
covid-19
protection
intervention
antibody
structure
neutralization
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate

Vaccine efforts against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the current COVID-19 pandemic are focused on SARS-CoV-2 spike glycoprotein, the primary target for neutralizing antibodies. Here, we performed cryo-EM and site-specific glycan analysis of one of the leading subunit vaccine candidates from Novavax based on a full-length spike protein formulated in polysorbate 80 (PS 80) detergent. Our studies reveal a stable prefusion conformation of the spike immunogen with slight differences in the S1 subunit compared to published spike ectodomain structures. Interestingly, we also observed novel interactions between the spike trimers allowing formation of higher order spike complexes. This study confirms the structural integrity of the full-length spike protein immunogen and provides a basis for interpreting immune responses to this multivalent nanoparticle immunogen.
covid-19
immune response
immunology
stability
spike protein
antibody
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.
covid-19
clinical trial
public health
epidemiology
expression
mutation
vaccine development
immunogenicity
vaccine, trial, approve, drug, healthy
protein, spike, neutralize, ace2, design
A human monoclonal antibody blocking SARS-CoV-2 infection

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19
covid-19
infection
prevention
expression
treatment
spike protein
virology
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design
A Newcastle disease virus (NDV) expressing membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine

A successful SARS-CoV-2 vaccine must be not only safe and protective but must also meet the demand on a global scale at low cost. Using the current influenza virus vaccine production capacity to manufacture an egg-based inactivated Newcastle disease virus (NDV)/SARS-CoV-2 vaccine would meet that challenge. Here, we report pre-clinical evaluations of an inactivated NDV chimera stably expressing the membrane-anchored form of the spike (NDV-S) as a potent COVID-19 vaccine in mice and hamsters. The inactivated NDV-S vaccine was immunogenic, inducing strong binding and/or neutralizing antibodies in both animal models. More importantly, the inactivated NDV-S vaccine protected animals from SARS-CoV-2 infections or significantly attenuated SARS-CoV-2 induced disease. In the presence of an adjuvant, antigen-sparing could be achieved, which would further reduce the cost while maintaining the protective efficacy of the vaccine.
covid-19
vaccine
protection
cost
challenge
manufacture
spike
potency
vaccine, trial, approve, drug, healthy
protein, spike, neutralize, ace2, design
A single-dose live-attenuated YF17D-vectored SARS-CoV2 vaccine candidate

The explosively expanding COVID-19 pandemic urges the development of safe, efficacious and fast-acting vaccines to quench the unrestrained spread of SARS-CoV-2. Several promising vaccine platforms, developed in recent years, are leveraged for a rapid emergency response to COVID-191. We employed the live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express the prefusion form of the SARS-CoV-2 Spike antigen. In mice, the vaccine candidate, tentatively named YF-S0, induces high levels of SARS-CoV-2 neutralizing antibodies and a favorable Th1 cell-mediated immune response. In a stringent hamster SARS-CoV-2 challenge model2, vaccine candidate YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose confers protection from lung disease in most vaccinated animals even within 10 days. These results warrant further development of YF-S0 as a potent SARS-CoV-2 vaccine candidate.
covid-19
vaccine
development
protection
epidemiology
immune response
transmission reduction
cell, antibody, immune, cov-2-specific, epitope
protein, spike, neutralize, ace2, design